UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat d’Informatica de Barcelona

Problem statement

One of the most challenging branches of computer animation is the physics simulation of the behavior
of objects in a scene. In particular, deformable objects are complex and challenging to simulate since
their behavior is defined by continuum mechanics. The Finite Elements Method is just one way of
tackling such a problem, following Baraff & Witkin’s (1998) formulation.

0 f At

i oftt) 20 £
or

M — At
ov o0x

AT = At 71 1 A2

Suppose we also add the requirement of interaction in the simulation. In that case, we need fast linear
algebra implementations that entirely use the underlying hardware to reach the desired frame rate.

Usually, such solvers are implemented using C++ together with some linear algebra library such as
Eigen. Of course, these libraries are already heavily optimized, with very performant solvers; how-
ever, by analyzing the actual problem to solve we can do better than raw Eigen. What is worth
implementing from scratch, and what should you reuse from Eigen”

Sparse Matrix random indexing

Our system’s matrix:

Flt) [lt)
M — Ataf _ AtQaf

Ov ox

It i1s a symmetric sparse matrix, whose entries are always determined by the connectivity of the
simulated mesh, if the elements are constant. Thus, this matrix is allocated only once with entries for
each connected pair of nodes < 7,7 >.

The issue here is filling and cleaning the sparse matrix.

Random indexing into Eigen’s sparse matrices require a binary search on all column entries.

e Scalar SparseMatrix: :coeff(Index row, Index col) const

e Scalar& SparseMatrix::coeffRef(Index row, Index col)

Instead, we build a table or hash table with entries for each pair of nodes connected < 7,57 > with
pointers to the first element of the 3 columns corresponding to the pair of nodes.
Eigen’s Sparse Matrix compressed format guarantees consecutive elements in a column will be con-
secutive 1 memory.

(i, j) = [*cl, #c2, 3]
| ‘ ‘

.
"
T
L]
/ A
-

We could do even better if we

manage to use Sparse block matrices of 3 x 3 blocks.
However, Eigen: :BlockSparseMatrix is currently unsup-
ported.

Preconditioned Conjugate Gradient

Eigen’s Preconditioned Conjugate Gradient is, algorithmically, as good as any CG solver can be.
However, it allocates multiple vectors on each solve() call, and an extra memcpy on
solveWithGuess ().

A Jacobi diagonal preconditioner can also be applied faster by using our previous static indexed
matrix.

Implementing a copy of Eigen’s CG solver, reusing memory, guarantees a noticeable speedup.

References

Baraff, D., & Witkin, A. (1998, July). Large steps in cloth simulation. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques (pp.
43-54).

Tamstorf, R., Jones, T, & McCormick, S. F. (2015). Smoothed aggregation multigrid
for cloth simulation. ACM Transactions on Graphics (TOG), 34(6), 1-13.

Interactive FEM CPU deformable simulation:

What you should (and shouldn’t) use with Eigen

Pol Martin and Toni Susin
VIRVIG, Universitat Politecnica de Catalunya

Avoiding hidden allocations in Eigen’s assignment

All the heavy work in Eigen is done by the assign operator, which tries to optimize the assigned
expression as much as possible by using something akin to lazy evaluation at compilation.

However, these expressions can have penalizations due to their implicit aliasing suppositions. Cer-
tain statements involving non-component-wise operations will dynamically allocate memory to hold a
temporary result before assigning it.

These hidden allocations can be easily detected by placing breakpoints in Eigen’s malloc calls at
Core/util/Memory.h.

To solve most of the aliasing suppositions, one must use MatrixBase<>::noalias() on the assigned
variable when it does not appear on the right-hand-side.

Complex operations, or statements using sparse vectors, sometimes produce unnecessary copies and
allocations, even without aliasing.

This example tries to contribute At2Ad} + AtA féparse to a dense vector. It produces multiple

allocations and copies.

rhs += dt * (A * ((dt * vec) + sparse_vec));

Use MatrixBase<>::noalias() to prevent allocations with the matrix dense vector product.
However, we cannot use this with the sparse matrix-sparse vector product.

rhs.noalias() += dt * dt * (A * vec);

rhs += dt * (A * sparse_vec);

Use a temporary vector, reused across iterations, to simplify the expression. Apply only one matrix
product with a dense vector.

tmp.noalias() = dt * vec;
tmp += sSparse_vec;

rhs.noalias() += dt * (A * tmp);

Velocity Constraints Projection

To enforce velocity constraints on a system A, its solution is projected onto a frame that satisfies
some constraints encoded in the matrix S. The projected system is SAST (Baraff & Witkin, 1998).
The sparse matrix S has only 3 x 3 block entries in its diagonal with each node’s filter S;.

(1 if no DoF' is constrained

AN

S, = ¢ I—- p@ﬁ? if 1 DoF' p; is constrained
;=

I-—]32]3? — qAZqAér if 2 DoFs, p; and ¢;, are constrained

\ 0 if all 3 DoFs are constrained

Building matrix S in each step is absurdly expensive, as it requires building and compressing a sparse
matrix.

We can avoid computing S altogether by noticing that the resulting structures of SAST will be
equivalent to A. And by just iterating the constrained nodes we can update our system sparse matrix
as follows:

Results

In a simulation with almost 6000 elements and 2100 nodes, we get the following speedups:

0 f /0% construction | System composition | Constraints | Overall Step
xH.487 x21.358 x218.79 x9.849

The 0 f /OZ construction heavily uses the random indexing, the system composition deals with the
statement organization to build the system, and Constraints applies the PPCG method of Tamstort
(2015).

Un-Optimized Optimized
SRV

\

= 4%

B 0%

m dfdx construction = System composition = Constraints Solve m Others m dfdx construction = System composition = Constraints Solve ® Others

Solve | Eigen |Eigen with guess, Ours
Time [0.0071 s 0.00439 s 0.00168 s
Speedup| x1 x1.614 x4.226

